Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys.

نویسندگان

  • Pablo Riba-Hernández
  • Kathryn E Stoner
  • Daniel Osorio
چکیده

Most platyrrhine monkeys have an X-linked tri-allelic polymorphism for medium and long wavelength (M/L) sensitive cone photopigments. These pigments' sensitivity maxima (lambdamax) range from 535 to 562 nm. All animals also have an autosomally coded short-wavelength-sensitive (S) cone pigment. In populations with three M/L alleles there are six different colour vision phenotypes. Heterozygous females have trichromatic colour vision, while males and homozygous females are dichromats. The selective basis for this polymorphism is not understood, but is probably affected by the costs and benefits of trichromatic compared to dichromatic colour vision. For example, it has been suggested that trichromats are better equipped than dichromats to detect fruit against a leaf background. To investigate this possibility, we modeled fruit detection by various colour vision phenotypes present in the frugivorous spider monkey, Ateles geoffroyi. Our study population is thought to have three M/L alleles with cone pigment lambdamax values close to 535, 550 and 562 nm. The model predicted that all trichromat phenotypes had an advantage over dichromats, and the 535/562 nm phenotype was best; however, the model predicted that dichromats could detect all of the fruit species consumed by spider monkeys. We conclude that the heterozygote advantage experienced by females may be the most plausible explanation for the maintenance of this polymorphism in A. geoffroyi. Nevertheless, more studies need to evaluate social foraging behaviour and the performance of different phenotypes of other New World monkeys to determine if this is a global explanation for this phenomena or more specific to A. geofforyi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus

Unlike most eutherian mammals, which have dichromatic (two-colour) vision, most platyrrhine primate species have polymorphic colour vision. This unique characteristic is enabled via multiple alleles for a midto long-wavelength-sensitive (M/LWS), single-locus opsin gene on the X chromosome. In combination with the autosomal opsin common to most vertebrates, this arrangement provides heterozygous...

متن کامل

Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys

New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long-to-middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the 'three-sites' rule). However, two L/M opsin alleles found in the black-handed spider monkeys (Ateles geoffroyi) are k...

متن کامل

Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae).

Colour vision varies within the family Atelidae (Primates, Platyrrhini), which consists of four genera with the following cladistic relationship: {Alouatta[Ateles (Lagothrix and Brachyteles)]}. Spider monkeys (Ateles) and woolly monkeys (Lagothrix) are characteristic of platyrrhine monkeys in possessing a colour vision polymorphism. The polymorphism results from allelic variation of the single-...

متن کامل

Comparative retinal physiology in anthropoids

During the last decade it has become clear that colour vision in platyrrhines (New World monkeys) differs from the uniform trichromatic pattern normally found in catarrhines (Old World monkeys, apes and human). Colour vision in most platyrrhine species is polymorphic, with many dichromatic individuals. The comparison of response properties in retinal ganglion cells and lateral geniculate cells ...

متن کامل

Color-vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica.

New World monkeys are unique in exhibiting a color-vision polymorphism due to an allelic variation of the red-green visual pigment gene. This makes these monkeys excellent subjects for studying the adaptive evolution of the visual system from both molecular and ecological viewpoints. However, the allele frequencies of the pigments within a natural population have not been well investigated. As ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 207 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2004